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ABSTRACT
In this paper we investigate an approach to provide approximate,
anytime algorithms for DCOPs that can provide quality guaran-
tees. At this aim, we propose the divide-and-coordinate (DaC) ap-
proach. Such approach amounts to solving a DCOP by iterating
(1) a divide stage in which agents divide the DCOP into a set of
simpler local subproblems and solve them; and (2) a coordinate
stage in which agents exchange local information that brings them
closer to an agreement. Next, we formulate a novel algorithm, the
Divide and Coordinate Subgradient Algorithm (DaCSA), a com-
putational realization of DaC based on Lagrangian decompositions
and the dual subgradient method. By relying on the DaC approach,
DaCSA provides bounded approximate solutions. We empirically
evaluate DaCSA showing that it is competitive with other state-of-
the-art DCOP approximate algorithms and can eventually outper-
form them while providing useful quality guarantees.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—Dis-
tributed Artificial Intelligence

General Terms
Algorithms theory

Keywords
DCOP, Multi-agent Optimization, Divide and Coordinate, DaCSA,
approximate algorithms, bounds

1. INTRODUCTION
A distributed constraint optimization problem (DCOP) [12, 10,

15] is a formalism that captures the rewards and costs of local inter-
actions in a Multiagent System (MAS) where each agent chooses
a set of individual actions. Unlike constraint optimization prob-
lems (COPs), agents in DCOPs need to coordinate in a decentral-
ized manner. DCOP is a framework that can model a large number
of coordination, scheduling, and task allocation problems in MAS.
DCOPs have already been applied to domains such as sensor net-
works [18], meeting scheduling [15, 9], and traffic control [6].

Traditionally, researchers have focused on developing complete
algorithms for DCOPs (e.g Adopt [12], OptAPO [10], DPOP [15])
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that return a globally optimal solution. However, since DCOPs are
shown to be NP-hard [12], complete algorithms are often unsuitable
for some actual-world domains.

Therefore, approximate algorithms have also been proposed to
solve DCOPs. On the one hand, stochastic algorithms such as the
Distributed Stochastic Algorithm (DSA) or the Distributed Break-
out Algorithm (DBA) [18] make agents locally update their deci-
sions based on their neighbours’ states. On the other hand, Max-
Sum (MS) [4] is a variant of the sum-product algorithm that has
been recently applied to DCOPs with success. These algorithms
are low-overhead algorithms (they require very little local compu-
tation and local communication) and thus are said to be well-suited
for large-scale applications. However, they may either converge to
poor solutions or even diverge.

Furthermore, as pointed out in [14], an important limitation of
these approximate algorithms is that they fail to provide any quality
guarantees for their solutions, leaving agents with high uncertainty
about the goodness of their decisions. Thus, although some works
have started to make headway in this direction [14, 3], the design
of new bounded, approximate DCOP algorithms that make efficient
use of limited resources and can provide useful bounds is still an
open issue.

We address this issue in this paper by: (1) proposing to solve
DCOPs by a novel approach, the so-called divide-and-coordinate
(DaC) approach, that provides a bound on the DCOP solution;
and (2) formulating and benchmarking the first DaC algorithm for
DCOPs. Concretely, this paper makes the following contributions:

• We propose to solve DCOPs by a novel approach, the DaC
approach, where agents divide an intractable DCOP into
simpler subproblems to individually solve them. Thereafter,
agents solve the DCOP by searching for an agreement on the
optimal assignments of their subproblems.

• We formulate a particular computational realization of the
DaC approach using two well-known techniques in optimiza-
tion: Lagrangian dual decompositions and subgradient dual
methods [2]. As a result, we provide a novel approximate
algorithm, the so-called Divide and Coordinate Subgradient
Algorithm (DaCSA), which allows agents to distributedly
solve DCOPs by providing bounded, anytime solutions.

• We empirically evaluate DaCSA on different agent network
topologies by comparing it with two state-of-the-art approx-
imate algorithms: Max-sum [4] and DSA [18]. The empiri-
cal results provide evidence of the competiveness of DaCSA,
specially on structured problems, where it does outperform
both Max-sum and DSA while providing significant bounds.

The use of subgradient algorithms and Lagrangian dual decom-
positions on distributed discrete optimization problems is not new.
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Figure 1: Example of a DCOP constraint graph .

In [8] Komodakis et al. apply a message-passing algorithm that
uses dual decomposition to solve Markov Random Fields with ap-
plication to computer vision problems. Furthermore, Hirayama et
al. proposed in [7] a distributed version of a subgradient algorithm
to solve the Generalized Mutual Assignment Problem. In contrast,
we use the Lagrangian dual decomposition and subgradient algo-
rithms as a tool for designing an algorithm that follows the more
general DaC approach. Moreover, to the best of our knowledge, in
this paper we present the first distributed algorithm that uses La-
grangian dual decompositions and subgradient methods to solve
DCOPs.

This paper is structured as follows. In section 2 we give an
overview of DCOPs. Next, in section 3 we formulate the divide-
and-coordinate approach. In section 4 we propose DaCSA, a novel
DCOP approximate algorithm. In section 5 we detail an empirical
evaluation of the performance of DaCSA against other state-of-the-
art approximate algorithms. Finally, we draw some conclusions and
set paths to future work in section 6.

2. OVERVIEW OF DCOPS
A Constraint Optimization Problem (COP) consists of a set of

variables, each one taking on a value out of a finite discrete domain.
A relation in this context determines the utility of every combina-
tion of values taken by the variables in its domain. The goal of a
COP algorithm is to assign values to these variables so that the total
utility is maximized.

Let X = {x1, . . . , xn} be a set of variables over domains
D1, . . . ,Dn. A utility relation is a function r : Dr → R

+ with
domain variables {xi1 , . . . , xiq} in Dr= Di1 × . . . × Diq , that as-
signs a utility value to each combination of values of its domain
variables. Formally, a COP is a tuple Φ = 〈X ,D,R〉 where: X is
a set of variables; D is the joint domain space for all variables; and
R is a set of utility relations. The objective function f is described
as an aggregation over the set of relations. Formally:

f(d) =
X
r∈R

r(dr) (1)

where d is an element of the joint domain space D and dr is an
element of Dr. The goal is to assess a configuration d∗ with utility
f∗ that maximizes the objective function in equation 1. A DCOP
[15, 12] is a distributed version of a COP where: (1) variables are
distributed among a set of agents A; and (2) each agent receives
knowledge about all relations that involve its variable(s). Although
an agent can be in charge of one or more variables, hereafter, we as-
sume that each agent ai is assigned a single variable xi. Moreover,
we focus on binary DCOPs (those whose utility relations involve at
most two variables). Therefore, we will refer to unary constraints
involving variable xi ∈ X as ri, and to binary constraints involving
variables xi, xj ∈ X as rij .

DCOPs are usually represented by their constraint graphs, where
nodes stand for variables and edges link variables that have some
direct dependency (appear together in the domain of some relation).

Figure 1 shows an example of a DCOP represented by its constraint
graph. For instance, note that relation r12 is known by agent a1,
that controls variable x1, and agent a2, that controls variable x2.
In this context, the neighbours of some agent a are those that share
some constraint with a. Thus, in figure 1, a2 and a3 are neighbours
of a1 because a1 shares relation r12 with a2 and r13 with a3.

3. DIVIDE-AND-COORDINATE DCOPS
At the aim of providing a bounded, approximate algorithm for

DCOPs, in this section we define a novel approach, the so-called
divide-and-coordinate (DaC) approach. The intuition behind the
DaC approach is simple. Since solving a DCOP is NP-Hard, we can
think of dividing this intractable problem into simpler subproblems
that can be individually solved by each agent. However, agents’ so-
lutions to their suproblems (local assignments) may conflict. Thus,
agents coordinate by exchanging information about their disagree-
ments. They subsequently employ such information to create a new
division that brings them closer to an agreement. Thus, agents itera-
tively divide and coordinate until finding an agreement. Therefore,
in order to solve a DCOP via a DaC approach, agents explore the
space of divisions to find a division such that they agree on their
individual solutions. This solution will be the solution to the origi-
nal DCOP. Moreover, as discussed below, the DaC approach allows
agents to naturally provide a bound on the DCOP solution during
their search for an agreement.

According to a DaC approach, agents iteratively try to solve a
DCOP Φ by interleaving two stages: a divide stage and a coordi-
nate stage. The divide and coordinate stages ran by each agent are
outlined in algorithm 1, a general DaC algorithm.

As a first step of the general DaC algorithm, agents create an
initial division distributedly. At this aim, each agent only uses its
local relations1 in Φ (line 2) splitting the relations shared with other
agents in equal parts. Thereafter, agents interleave divide and co-
ordinate stages till reaching an agreement. For instance, in figure
2, agents divide the original DCOP Φ into three local subproblems
(Φ1, Φ2, Φ3), one per agent/variable. The right hand side of figure
2 (connected with arrows to its respective agent) details a particular
division of the DCOP in figure 1 into three subproblems. Thus, the
subproblem created by agent a1 is Φ1, where X 1 = {x1, x2, x3},
D1 = {D1,D2,D3}, and R1 = {r1,

1
2
r12,

1
2
r13}).

During the divide stage, agents solve their local subproblems
(line 6). Observe now that agents’ subproblems share variables
(e.g. variable x2 in figure 2 is shared by all agents). Hence, agents
may disagree on the values of their shared variables after solving
their subproblems. In figure 2, agents’ local solutions (d∗

1, d
∗
2, d

∗
3)

may disagree on the assignment to x2. Therefore, to resolve con-
flicts, agents proceed with a coordination stage by exchanging local
information with their neighbours. The information about neigh-
bouring subproblems gathered during the coordinate stage (line 8)
will be used by each agent, during a subsequent divide stage, to
modify its subproblem to approach its decision to its neighbours’
solution (line 5).

An important feature of the DaC approach is the requirement that
the local subproblems in each divide stage compose the original
DCOP Φ. In such case, we say that the set of subproblems are
a valid division of the DCOP Φ. Next we formally describe the
notion of a valid division of a DCOP.

DEFINITION 1 (VALID DIVISION). Given a DCOP Φ, a set
of m subproblems {Φs|s = 1, . . . , m} is a valid division of Φ if its

1As described in section 2, an agent’s local relations in a DCOP are
those that include the variables in its domain.
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Algorithm 1 DaC(Φ)

Each agent ai runs:

1: ai.pCoordinate = ∅; ai.neighbours = N(ai); ai.x = xi

2: Φi ←createSubproblem(〈X i,Di,Ri〉)
3: repeat
4: /*Divide stage*/
5: Φ̄i ← modifySubproblem(Φi, ai.pCoordinate);
6: 〈d∗

i , f∗
i 〉 ←solveSubproblem(Φ̄i);

7: /*Coordinate stage*/
8: ai.pCoordinate ←coordinate(ai.neighbours);
9: until agreement

objective function, f , can be rewritten as the sum of the objective
functions of the individual subproblems, namely:

f(d) = f1(d1) + . . . + fm(dm) (2)

where fs is the objective function for subproblem Φs, and ds is the
projection of d over the variables of Φs.

In figure 2 the set of subproblems created by agents in a divide
stage are a valid division of the original DCOP with objective f iff:
f(x1, x2, x3) = f1(x1, x2, x3)+f2(x1, x2, x3)+f3(x1, x2, x3).
For instance, in figure 2 it is easy to check that combining the re-
lations splitted in different subproblems recovers the original rela-
tions in the DCOP in figure 1.

The value of a division {Φs|s = 1, . . . , m} is the sum of solu-
tions of individual subproblems, namely

Pm
l=1 f∗

s , where f∗
s is the

value of subproblem Φs evaluated at its optimal solution d∗
s .

Next, we show that the DaC approach has two important prop-
erties: (1) the sum of solutions to subproblems is always an upper
bound on the quality of the global (optimal) solution; and (2) if
all agents reach an agreement on a joint solution when optimizing
their local subproblems, such solution is the optimal one.

Next we formulate the two propositions, which found the DaC
approach, that relate the global solution and the value of a DCOP
Φ with the local solutions and value of individual subproblems that
compose any division of Φ.

PROPOSITION 1. Given a DCOP Φ with objective function f ,
the value of a division {Φs|s = 1 . . . m} of Φ is an upper bound
on its optimal solution, namely f∗ ≤ f∗

1 + . . . + f∗
m.

PROOF. We prove this by contradiction. Assume that there is
an assignment d ∈ D whose value is greater for Φ than the value
for some division Φ1, . . . , Φm of Φ, that is (f(d) = f1(d1) +
. . . + fm(dm)) > f∗

1 + . . . + f∗
m. This implies a contradiction

since at least some function fs ∈ {f1, . . . , fm} evaluated at ds

(the projection of d over the variables in Φs) should be greater than
its optimal solution f∗

s .

Thus, the utility of the optimal solution of a DCOP is always lower
than the value of any of its divisions. This upper bound allows to
provide approximate solutions with quality guarantees.

PROPOSITION 2. Given a DCOP Φ and a division {Φs|s =
1 . . . m}, if the solutions of all individual subproblems assign the
very same value to each variable in X , then this assignment is the
optimal solution of Φ. In this case, the upper bound of proposition
1 is met with equality, f∗ = f∗

1 + . . . + f∗
m.

PROOF. Assume that the solutions d∗
1 . . . d∗

m of the individual
subproblems of a division {Φs|s = 1 . . . m} of Φ assign the same
value to each variable in X . Let d = d∗

1∩. . .∩d∗
m be the values that

individual subproblems assign to variables in X . By proposition

Agents create a new divison 
and solve local subproblems

Agents cooperate by exchanging information 
to reach an agreement with their neighbours

a2

a1

f*2
a3

f*1 f*1
f*3

f*2

f*3

f1(x1,x2,x3) f2(x1,x2,x3) f3(x1,x2,x3) 

a1
a2 a3

+ +
X1

X2 X3

r1 
1/2.r12 1/2.r13

X1

X2 X3

1/2.r12

r2 
1/2.r23X1

X3X2

1/2.r13

1/2.r23

r3 

Figure 2: Divide-and-coordinate approach.

1, we know that the value of any DCOP configuration cannot be
greater than the value of any of its divisions. Thus, the value of any
other configuration d′ ∈ D of Φ is lower than the value of d, and
hence d is the optimal solution of Φ.

To summarise, to solve a DCOP Φ by DaC, agents explore the
space of valid divisions to find a division such that the solution of
individual subproblems agree (that will be the solution of Φ). How-
ever, even when the subproblems in a valid division do not agree
on their assignments, agents can still provide quality guarantees on
such solution using the bound of proposition 1.

Next, we will formulate a particular computational realization of
the DaC approach, namely of algorithm 1, using dual decomposi-
tion techniques well-known in optimisation [2].

4. DACSA: A DAC ALGORITHM
In this section we formulate the so-called Divide And Coordi-

nate Subgradient Algorithm (DaCSA), an anytime algorithm that
allows agents to solve DCOPs while returning a quality guarantee
on the solution. DaCSA is a particular computational realization of
the DaC approach based on Lagrangian dual decompositions and
subgradient methods. Next, in section 4.1 we provide the formal
foundations of DaCSA while in section 4.2, we provide its algo-
rithmic details.

4.1 Formal foundations
To build a computational realization of the DaC approach to

solve a DCOP Φ we must define: (1) what information agents ex-
change about local subproblems during the coordinate step; and (2)
how to use that information to create, at each divide step, a valid
tractable division of Φ whose subproblems’ solutions are closer
to an agreement. At this aim, we propose to use Lagrange dual
decomposition along with subgradient methods, both well-known
techniques in optimization with strong theoretical properties (refer
to [2], section 6.4).

In the remaining of the section let Φ = 〈X ,D,R〉 be a binary
DCOP. Furthermore, let {Φ1, . . . , Φm}, m = |X | be a valid divi-
sion of Φ, where Φs = {X s,Ds,Rs} and:

X s = {xi ∀xi ∈ N(xs) ∪ {xs}}, (3)

Ds = DXs , and (4)

Rs = {rs
s = rs} ∪ {rs

sj =
1

2
· rsj ∀rsj ∈ R} ∪

∪ {rs
is =

1

2
· ris ∀ris ∈ R} (5)

In the valid division above each subproblem Φs is defined over
variable xs and its neighbours N(xs). Moreover, Φs is assigned
the full unary relationship for variable xs, and a half of every bi-
nary relation involving xs. The right hand side of figure 2 details
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the division of the DCOP in figure 1 that agents will create when
following equations 3- 5. Notice that, in a binary DCOP, all these
subproblems are acyclic and therefore identified as computationally
tractable [16].

To apply duality we need to formalize Φ as a binary linear pro-
gram (LP). With this purpose, for each subproblem Φs we define
the following binary variables:

• xs
i;k, that takes on value 1 when variable xi in subproblem

Φs takes on value k.
• xs

ij;kl, that takes on value 1 when variables xi,xj in subprob-
lem Φs take on values k and l respectively.

Formally, the set of binary variables of subproblem Φs is given by:

Xs = {xs
i;k : ∀i ∈ X s ∀k ∈ Di}∪{xs

ij;kl : ∀rs
ij ∈ Rs ∀k ∈ Di ∀l ∈ Dj}

With this set of variables we can express the objective function for
subproblem Φs as:

fs(Xs) =
X

k∈Ds

xs
s;k · rs

s(k) +
X

rij∈Rs

X
k∈Di

X
l∈Dj

xs
ij;kl · rs

ij(k, l)

Then, solving Φ amounts to solving the following LP:

max
x

f(x) = max
{Xs}

mX
s=1

fs(X
s) (6)

subject to the following constraints (∀s ∈ {1, . . . , m}):

(C1) A unique value is assigned to each variable:
X

k∈Di

xs
i;k = 1 ∀xi ∈ X s

X

k∈Di

X

l∈Dj

xs
ij;kl = 1 ∀rs

ij ∈ Rs (7)

(C2) A variable is assigned the very same value in all relations:

xs
i;k =

X
l∈Dj

xs
ij;kl ∀rs

ij ∈ Rs ∀k ∈ Di

xs
j;l =

X
k∈Di

xs
ij;kl ∀rs

ij ∈ Rs ∀l ∈ Dj

(8)

(C3) Subproblems agree on variables’ values:

xi
i;k = xj

i;k ∀xi ∈ X ∀xj ∈ N(xi) ∀k ∈ Di

xi
ij;kl = xj

ij;kl ∀rij ∈ R ∀k ∈ Di ∀l ∈ Dj
(9)

Notice that the sets of constraints (C1) and (C2) ensure consistency
in assignments inside each subproblem, whereas the set of con-
straints (C3) ensures consistency between subproblems.

In order to solve subproblems independently, we relax the con-
straints coupling subproblems, namely those in (9), by introducing
them into the objective function using the technique of Lagrange
multipliers [2]. Hence, the set of Lagrange multipliers {λ} are:

λj
i;k · (xi

i;k − xj
i;k) ∀xi ∈ X ∀xj ∈ N(xi) ∀k ∈ Di

λij;kl · (xi
ij;kl − xj

ij;kl) ∀rij ∈ R ∀k ∈ Di ∀l ∈ Dj
(10)

Given a set of Lagrange multipliers {λ}, each original subproblem
Φs = {X s,Ds,Rs} is transformed into a new subproblem Φs =
{X s,Ds,Rs}, whose objective function is defined as:

fs(Xs) =
X

k∈Ds

xs
s;k · (rs

s(k) +
X

xj∈N(xs)

λj
s;k)

−
X

xj∈N(xs)

X
l∈Dj

xs
j;l · λs

j;l

+
X

rs
is∈Rs

xs
is;kl · (rs

is(k, l) + λis;kl)

+
X

rs
sj∈Rs

xs
sj;kl · (rs

sj(k, l) − λsj;kl)

(11)

Notice that equation 11 helps us implement the divide stage of
the DaC approach. Thus, it realises the modifySubproblem
function in the general algorithm 1 using the Lagrange multipliers
as coordination parameters.

To assess a new set of Lagrange multipliers that minimize the
violation of constraints, that is that bring solutions of subproblems
{Φ1, . . . , Φm} closer to an agreement, we propose to use the sub-
gradient method [2]. The subgradient method is an iterative method
that allows to update Lagrange multipliers in parallel from the solu-
tion of the neighbouring subproblems at each iteration. Following
the subgradient method, Lagrange multipliers in subproblem Φs at
iteration t are updated as follows 2:

λj,t+1
s;k = λj,t

s;k − γt · (x∗,s
s;k − x∗,j

s;k) ∀k ∈ Ds

λs,t+1
j;l = λs,t

j;l − γt · (x∗,j
j;l − x∗,s

j;l ) ∀l ∈ Dj

λt+1
sj;kl = λt

sj;kl − γt · (x∗,s
sj;kl − x∗,j

sj;kl) ∀k ∈ Ds ∀l ∈ Dj

λt+1
is;kl = λt

is;kl − γt · (x∗,i
is;kl − x∗,s

is;kl) ∀k ∈ Di ∀l ∈ Ds

(12)

where x∗,s
s;k is the optimal assignment for variable xs

s;k in sub-

problem Φs.
Notice that the equations in 12 help us implement the coordinate

stage of the DaC approach. Thus, they realise the coordinate
function in the general algorithm 1 by assessing the value of the
Lagrange multipliers as coordination parameters. Following these
equations, the value of a Lagrange multiplier is modified when-
ever the two subproblems involved with the multiplier disagree on
the value assigned to a variable, and it remains unchanged if they
agree. This can be interpreted as an attempt to reduce disagreement
between subproblems. Moreover, the update of Lagrange multipli-
ers considers a step-size γt (a positive real value) that weighs the
impact of disagreements on updates. The larger the value of γt, the
higher the impact of disagreements on Lagrange multipliers.

Observe that the subproblems generated by equation 11 conform
a valid division of the original DCOP. Hence, propositions 1 and
2 apply to subproblems {Φ1, . . . , Φs} so that: (1) if all subprob-
lems agree on the value of shared variables then these values are
the DCOP solution; and (2) the sum of the value of the solutions
of individual subproblems provides a bound on the quality of the
solution of the original problem.

4.2 DaCSA
In this section we formulate DaCSA, a bounded anytime DCOP

algorithm that implements a DaC approach based on the formal
foundations established in section 4.1. Agents running DaCSA
start by creating simpler problems from their known relations of
a DCOP, thus composing a valid division. Thereafter, they inter-
leave divide and coordinate stages. During each divide stage, each
agent modifies its subproblem by a set of coordination parameters
(the Lagrange multipliers) using equation 11. Next, each agent
solves its new subproblem to obtain the set of variable assignments
that maximise its objective function. During each coordinate stage,
each agent exchanges its local assignments with its neighbours and
updates its coordination parameters using equation 12. Moreover,
to return bounded anytime solutions, agents need to evaluate the
candidate solution and to assess the bound.

The DaCSA algorithm is outlined in algorithm 2 (figure 3(a)).
In what follows we detail each phase of DaCSA using the trace in
figure 3(b) of a run over the DCOP in figure 1.

At the beginning of the algorithm, each agent ai creates its lo-
cal problem Φi using its local information in the DCOP (line 2)
using equations 3-5. Thus, in figure 3, agent a2 creates its lo-
cal problem Φ2 = 〈X 2,D2,R2〉 for its variable x2 where: (1)

2At t = 0, each Lagrange multiplier is set to 0.
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Algorithm 2. DaCSA(Φ)
Each agent ai runs:

1: bound ← ∞; {λ0} ← 0; solution ← ∅;
bestV alue ← −∞; Ci ← ∅;

2: Φi ← createSubproblem(〈X i,Di,Ri〉);
3: repeat
4: /* Divide stage */
5: Φi ← modifySubproblem(Φi, {λi});
6: (X∗,i, f∗

i ) ← solveSubproblem(Φi);
7: /* Coordinate stage */
8: for xv ∈ N(xi) do
9: Ψv

i ←makeCoordInfo(x∗,i
i , x∗,i

v , f∗
i , Ci);

10: Ψi
v ← exchangeCoordInfo(Ψv

i );
11: end for
12: γt ← updateStepSize();
13: {λ} ←updateCoordParams({λ}, γt, X

∗,i);
14: if betterBoundAvailable({Ψ}, bound) then
15: Update bound.
16: end if
17: if betterSolAvailable({Ψ}, bestV alue) then
18: Update solution and bestV alue.
19: end if
20: Ci ← selectCandidateSolutions(xi, Ci);
21: until any termination condition satisfied
22: return 〈solution, bestV alue, bound〉

(a) DaCSA algorithm

                     λ2;0 += (x2;0-x2;0)⋅γ0
                     λ2;1 += (x2;1-x2;1)⋅γ0
                     λ23;01 += (x23;01-x23;01)⋅γ0
                     λ23;11 +=(x23;11-x23;11)⋅γ0
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(b) Trace of DaCSA.

Figure 3: DaCSA algorithm and its trace

X 2 is composed of x2 and its neighbours in the constraint graph,
X 2 = {x1, x2, x3}; (2) D2 is the joint domain space for the vari-
ables in X 2; and (3) R2 contains r2, the unary relation for x2, and a
half of each binary relation involving x2, namely 1

2
·r13 and 1

2
·r23.

Divide stage. During a divide stage, each agent modifies its lo-
cal problem with coordination information to subsequently solve it.

Firstly each agent ai obtains a new subproblem Φi = 〈X i,Di,Ri〉
(line 5) by modifying its local relations by applying equation (11)
with its coordination parameters. Thus, for instance in figure 3(b),

the new set of relations R2
created by a2 is composed of: (1) the

unary relation r2
2 along with Lagrange multipliers to coordinate the

x2 assignments with a1, namely λ1
2;k, and a3, namely λ3

2;k; (2)

the binary relation r2
12 along with the Lagrange multipliers λ12;k

to coordinate the {x1, x2} assignments with a1;(3) the binary rela-
tion r2

23 along with the Lagrange multipliers λ23;kl coordinate the
{x2, x3} assignments with a3; and (4) Lagrange multipliers per
neighbouring variables of x2, namely λ2

2;k and λ2
3;k, to coordinate

the x1 assignments with a1 and the x3 assignments with a3.
Secondly, each agent ai solves its new subproblem to obtain

its optimal local solution, X∗,i, along with its value f∗
i (line 6).

Since each individual subproblem Φi stands for an acyclic DCOP,
an agent can use any of the efficient solvers in the literature (e.g
[15, 4]) to solve them. In figure 3(b), agents a1, a2, and a3 solve
their local subproblems to obtain the following local solutions:
X∗,1 = {x∗,1

1 = 1, x∗,1
2 = 0, x∗,1

3 = 1}, X∗,2 = {x∗,2
1 =

1, x∗,2
2 = 0, x∗,2

3 = 1}, and X∗,3 = {x∗,3
1 = 1, x∗,3

2 = 1, x∗,3
3 =

1} respectively. According to the DaC approach, agents’ solutions
may disagree after a divide stage, as it is the case in this example.
Thus, agent a2 disagrees with a3 on the optimal configuration of
variable x2 and, consequently, on the optimal joint configuration
for their variables x2 and x3.

Coordinate stage. During a coordinate stage, each agent ex-
changes its local assignments with its neighbours and updates its
coordination parameters trying to reduce the disagreement among
them using subgradient method updates.

Before updating the coordination parameters, each agent ai ex-
changes a message Ψv

i with each one of its neighbours av that con-
tains the assignments for their common variables, namely xi and
xv (lines 8-11). Thus, in figure 3, agent a2 sends a message to a1

with assignments {x∗,2
1 = 1, x∗,2

2 = 0} and a message to a3 with
assignments {x∗,2

2 = 0, x∗,2
3 = 1}. Then each agent calculates the

step-size γt for that iteration according to the chosen step-size rule
(line 12). Each agent uses the assignments received from its neigh-
bours to update the coordination parameters (Lagrange multipliers)
following subgradient updates in equation 12. Thus, in figure 3, a2

uses the assignments received from a3 for their common variables,
namely {x∗,3

2 = 1, x∗,3
3 = 1} to update the coordination parame-

ters trying to decrease the disagreement with a3. Since both agents
agree on the optimal value of x3 the Lagrange multipliers that mea-
sure the disagreement over x3, namely λ2

3;0 and λ2
3;1, remain un-

changed. Moreover, since both agents agree on that joint configura-
tions {x2 = 0, x3 = 0} and {x2 = 1, x3 = 0} are not optimal, the
Lagrange multipliers λ23;00, λ23;01 also remain unchanged. There-
fore, following equation 12, the only Lagrange multipliers updated
by a2 given a3 assignments are λ3

2;0, λ3
2;1, λ23;01 and λ23;11. Thus,

since a2 sets x2 to 0 and a3 sets x2 to 1, a2 increases λ3
2;0 and de-

creases λ3
2;1 by γt. This decreases the utility of relation r2 for its

current optimal configuration, namely r2(0), and increments utility
for a1’s optimal configuration, namely r2(1), thus making it easier
for them to get to an agreement. The same happens for λ23;01 and
λ23;11.

Additionally, when an agent ai exchanges messages with its
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neighbours for their common assignments, it also includes the can-
didate solution for variable xi in the former iteration. This value,
namely ci, does not have to be the same as x∗,i

i , the value that max-
imises its individual subproblem. A typical strategy is that each
agent ai selects the configuration ci for its variable xi that most
agents agree on. Following this strategy, in figure 3, agent a2 would
select c2 = 0 because both a1 and a2 assigned 0 to x2 whereas only
a3 assigned 1 to it. One can use different strategies simultaneously
to generate the selected values. That is why we use Ci to note the
set of candidate solutions (one for each strategy) for variable xi.

Calculate bound and anytime solutions. To be able to return
anytime solutions with quality guarantees, each agent must calcu-
late the bound, assessed as the sum of solutions of all subproblems.
Likewise each agent has to calculate the value of a candidate so-
lution, assessed as the sum of all local values for that candidate
solution, for each pair of divide and coordinate steps. However,
in a distributed environment such as DaCSA, there is no single
agent that knows these values: each agent ai, at each iteration, only
knows its local solution f∗

i and the local value for the candidate so-
lution fi({C}i) where {C}i contains the candidate solution for xi,
namely ci, and the candidate solutions for each of its neighbour-
ing variables xj , namely cj , received from each neighbour during
the exchangeCoordInfo. Thus, agents need a distributed pro-
tocol that allows them to calculate these aggregations of data and
synchronize their bound and anytime solution updates. There are
multiple [19, 7] protocols available in the literature to perform this
task. We chose the one detailed in [19] because it allows agents
to calculate the aggregations of local data without any additional
message, only using the coordination messages exchanged during
the execution of DaCSA. In this protocol, agents are initially ar-
ranged on a tree. For each value that has to be aggregated, each
agent: (1) receives some data from its children, (2) aggregates these
data and sends the results to its parent, (3) receives the aggregated
value from its parent, and finally (4) relays this value to its chil-
dren. These operations, that are interleaved with the DaCSA co-
ordination messages, introduce little computation overhead. More-
over, the time and space requirements for each agent are linear the
height of the chosen tree. When all agents have received the infor-
mation related to the aggregated data for an iteration (e.g the value
of the bound and of the candidate solution), they use it to update
the bound (lines 14-16) and the anytime solution (lines 17-19), if
applies. Because the aggregation process needs some message cy-
cles to complete, agents will not have the actual anytime solution
values during the first DaCSA iterations. Thus, in this initial phase,
agents simply return the latest generated candidate solution without
giving any guarantee on its quality.

Check termination conditions. At each iteration of the algo-
rithm, each agent checks if some termination condition is satisfied.
Typical termination conditions for DaCSA are: (1) the gap between
the bound and the value of the anytime solution is lower than a
threshold; (2) the bound has not been updated for a number of iter-
ations; or (3) the number of current iterations exceeds a maximum.

4.3 Complexity analysis
For each iteration of the algorithm, agents run a communication

round in which each agent exchanges a message with each one of
its neighbours in the constraint graph. Therefore, the number of
messages exchanged per iteration is 2 · |E|, where E is the set
of edges of the constraint graph. A message from ai to av con-
tains the assignments for their two common variables along with
the candidate solution for xi. Therefore, the size of all exchanged

messages is linear to the domain of variables. Messages are en-
hanced with the aggregation of data to calculate bounds and eval-
uate candidate configurations, which is linear to the height of the
communication tree. With respect to computation, each agent at
each iteration: (1) creates its own subproblem in parallel with the
rest of agents; (2) solves a local problem composed of a two-level
tree structured DCOP; and (3) updates the coordination parameters.
The three steps (1) (2) (3) require a number of operations linear to
the size of the local relations. As a result, DaCSA is a low-overhead
algorithm because agents exchange a linear number of messages of
linear size and performs a linear number of operations.

5. EMPIRICAL EVALUATION
In this section we compare DaCSA with two state-of-the-art ap-

proximate algorithms: Max-sum (MS) [4] and DSA [18]. Firstly,
we explain the details of our experimental setup in section 5.1. Sec-
ondly, we analyze our empirical results in section 5.2.

5.1 Empirical settings

5.1.1 Problem generation
We perform our comparison over randomly generated DCOP

problems with binary variables. The process of generating a DCOP
is divided in two steps. Firstly, we generate a constraint graph, and
afterwards we generate values for each of the relationships in the
constraint graph. Several results in agent research have found that
the network topology has a significant effect when solving a dis-
tributed problem (e.g. emergence of social conventions [17] or or-
ganizational adaptation [5]). In our experiments we analyze three
network topology alternatives:

Small-world Many real-world networks, such a as food chains,
electric power grids or social influence networks show the small-
world effect [11], that is, the distance between any two nodes in the
network is very small. We generate constraint graphs that show the
small-world effect using the model proposed in [13]. The graphs
are created by starting from a ring and adding a small number of
random edges. In particular, for each node we use a probability
p = 0.3 of adding a new random edge.

Regular grids The constraint graphs are rectangular grid where
each agent is connected to its four closer neighbors.

Random networks The constraint graphs are created by randomly
adding three links for each variable.

Once a constraint graph is generated, we must assess its con-
straints’ values. We are interested in evaluating our algorithms
in the presence of strong dependencies among the values of vari-
ables. At this aim, we generate constraint values by following an
Ising model [1]. Ising models have been widely used in statistical
physics. Following an Ising model, the weight of each binary rela-
tion rij , is determined by first sampling a value κij from a uniform
distribution U [−β, β] and then assigning

rij(xi, xj) =

(
κij xi = xj

−κij xi �= xj

Note that the constraint pushes both variables to be similar when
κij is positive and forces them to be different when κij is negative.
The β parameter controls the average strength of interactions. In
our experiments we set β to 1.6. The weight for each unary con-
straint ri is determined by sampling κi from a uniform distribution
U [−0.05, 0.05] and then assigning ri(0) = κi and ri(1) = −κi.

154



gain w.r.t. Max-Sum gain w.r.t. DSA loss w.r.t. DaCSA bound

50 100 150 200 250 300

−30

−20

−10

0

10

message cycles

p
e
r
c
e
n
t
 
g
a
i
n

(a) Small world 20 variables

50 100 150 200 250 300
−40

−20

0

20

message cycles

p
e
r
c
e
n
t
 
g
a
i
n

(b) Regular grid 25 variables

50 100 150 200 250 300

−40

−20

0

20

message cycles

p
e
r
c
e
n
t
 
g
a
i
n

(c) Random 20 variables

50 100 150 200 250 300
−40

−20

0

20

message cycles

p
e
r
c
e
n
t
 
g
a
i
n

(d) Small world 40 variables

50 100 150 200 250 300
−40

−20

0

20

message cycles

p
e
r
c
e
n
t
 
g
a
i
n

(e) Regular grid 49 variables

50 100 150 200 250 300

−40

−20

0

message cycles

p
e
r
c
e
n
t
 
g
a
i
n

(f) Random 40 variables

Figure 4: Graphs showing the percent gain of DaCSA with respect to MS and DSA and the percent loss with respect to the DaCSA
bound vs the number of message cycles on agent networks with different topologies and scales.

5.1.2 Algorithms’ parameters
In this section we provide details on the particular parameters

selected for DSA and DaCSA in these experiments.
For DSA we use an activation probability p = 0.7, a value that

is reported to work well in [18]. Since DSA usually converges in
a small number of iterations to get a fair comparison we restart it
every time it converges keeping the best configuration among all
converged solutions.

Regarding DaCSA, we must specify: (1) the strategy used by
agents to generate configurations at each pair of divide and coordi-
nate stages; and (2) how to assess the step-sizes γt in equation 12.

At each iteration two different candidate solutions are proposed
by DaCSA. For the first one, each agent assigns to its variable the
value on which more agents agree (explained in section 4.2) For the
second one, each agent assigns to its variable the value on which
more agents agree when the remaining variables in its subproblem
are given the values selected by the candidate solution in the previ-
ous iteration. We assess the step-size at each iteration t as follows:

γt =
1 + m

t + m
· bestV alue − bound

(
P

λ∈{λ}(λ
t − λt−1)2)2

(13)

where m = 5. The intuition behind this formula is that the in-
formation transferred between agents for each constraint (γt) gets
larger when the distance between the value of the best solution
found so far and the bound grows, namely, when the algorithm
is far from the optimal solution. Furthermore, it also gets larger
when the level of disagreement among agents is smaller (there are
fewer constraints among which we have to share the load). Each
agent instantiates the bound, the value of the anytime configuration
and the sum of Lagrange multipliers in equation 13 with the values
of the last known divide and coordinate stages. At an early stage
in the execution, when agents do not know yet the value of these
parameters, they use a constant step-size γt = 0.001/

√
t.

5.2 Results
We compare these algorithms based on the solution obtained in

a number of message cycles. The number of message cycles is
a commonly used measure for algorithm efficiency in the DCOP
literature [14, 12, 10]. It is specially adequate to our case because
all the algorithms benchmarked are low-overhead algorithms.

At a concrete point in time, let qD be the quality of the DaCSA
anytime solution and qx the quality of the solution of its competitor
x. The percent gain of DaCSA with respect to x is assessed as
100 · ( qD−qx

qx
). We also plotted the percent loss of DaCSA against

the bound to have an idea of the accuracy of the bound.

5.2.1 Comparing DaCSA with DSA and Max-sum
Figures 4 (a) (b) and (c) show the results for 20 agents (25 in

the regular grid) on a small-world, regular grid, and random struc-
ture respectively. Each graph shows the mean among 25 problem
instances of the percent gain of DaCSA with respect to Max-sum
(MS) and DSA when varying the number of message cycles (mcs)
up to 300.

Over more realistic topologies (small world and regular grids)
we observe that DaCSA outperforms Max-Sum and DSA. Con-
cretely, at 50 message cycles, in small-world topologies, DaCSA
gets a mean percent gain of around 10% with respect DSA and
Max-sum. For regular grids, at 50 message cycles, the mean per-
cent gain of DaCSA with respect to DSA and Max-sum is around
10% and 20% respectively. In both topologies, the gain with re-
spect Max-sum remains nearly unchanged but the gain with respect
to DSA is reduced although it never gets negative along the 300
messages cycles.

However, in random instances DaCSA performs slightly worse
and, although it gets better results than Max-sum (it gets a mean
gain of 20% at 50 message cycles) it is unable to outperform DSA.

The same conclusions (although more significant) hold for fig-
ures 4 (d), (e), and (f), as the number of variables increases to 40
(49 in the regular grid case). Hence, the network topology seems
to be a key factor for DaCSA’s performance.

5.2.2 DaCSA bound quality
Table 1 shows the quality guarantees provided by the DaCSA
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by showing the mean of the approximation ratios given by DaCSA
solution and its bound and its variance on different topologies.

Topology Vars Message cycles
50 mcs 100 mcs 300 mcs

Small-world
v20 1.17 ± 0.004 1.13 ± 0.002 1.12 ± 0.002
v40 1.22 ± 0.004 1.14 ± 0.002 1.10 ± 0.002

Regular grids
v25 1.32 ± 0.006 1.28 ± 0.006 1.26 ± 0.004
v49 1.41 ± 0.004 1.33 ± 0.003 1.29 ± 0.003

Random
v20 1.77 ± 0.007 1.76 ± 0.007 1.75 ± 0.007
v40 1.96 ± 0.007 1.95 ± 0.012 1.88 ± 0.008

Table 1: Mean of approximation ratios on different topologies
calculated from DaCSA solutions and bounds

The bound provided by DaCSA on realistic topologies is very
accurate. The mean loss of DaCSA with respect to the bound
is around 12% (approximation ratio of 1.17) in small-world and
around 23% (approximation ratio of 1.32) in regular grids. The
bound provided by DaCSA over random networks is less accu-
rate.mean percent loss

These first empirical results show the potential of DaCSA be-
cause it provides good solutions on realistic topologies with highly-
coupled matrices. Moreover, the results also show that the approx-
imation ratio that the algorithm provides in this kind of problems
is significant. DaCSA provides worse solutions on unstructured
problems.

6. CONCLUSIONS
In this paper we addressed the problem of designing a low-overhead

DCOP approximate algorithm that can assess a quality guarantee
on its solutions. Thus, our first contribution is the divide-and-
coordinate (DaC) approach, a novel approach to solve DCOPs. We
have shown that any algorithm formulated in the DaC approach can
naturally provide a bound on the DCOP solution while searching
for an agreement.

Our second contribution is a novel bounded anytime DCOP algo-
rithm, the so-called Divide-and-Coordinate Subgradient algorithm
(DaCSA), a computational realization of the DaC approach based
on Lagrangian decompositions and subgradient methods. When
running DaCSA, agents can provide anytime solutions with quality
guarantees while using little local computation and local commu-
nication. Finally, we provide empirical results for DaCSA showing
its potential, particularly on problems over realistic topologies.

As future work, we plan to explore multiple lines. Firstly, we
intend to benchmark DaCSA on a further number of datasets, to
perform a better analysis of its performance and its dependence
on the structure of the problem. Secondly, we aim at designing a
version of DaCSA that adapts to changes so that it can be applied
to dynamic environments. Finally, we plan to extend DaCSA to
better trade-off communication with computation. This amounts
to allowing agents to handle more complex subproblems and ex-
change information about their disagreement on larger combina-
tions of variables.
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